skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moodie, Andrew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems. 
    more » « less
  2. Abstract Deltas exhibit spatially and temporally variable subsidence, including vertical displacement due to movement along fault planes. Faulting‐induced subsidence perturbs delta‐surface gradients, potentially causing distributary networks to shift sediment dispersal within the landscape. Sediment dispersal restricted to part of the landscape could hinder billion‐dollar investments aiming to restore delta land, making faulting‐induced subsidence a potentially significant, yet unconstrained hazard to these projects. In this study, we modeled a range of displacement events in disparate deltaic environments, and observe that a channelized connection with the displaced area determines whether a distributary network reorganizes. When this connection exists, the magnitude of distributary network reorganization is predicted by a ratio relating dimensions of faulting‐induced subsidence and channel geometry. We use this ratio to extend results to real‐world deltas and assess hazards to deltaic‐land building projects. 
    more » « less
  3. Abstract Climate change is raising sea levels across the globe. On river deltas, sea‐level rise (SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that adversely impact coastal communities. There is significant uncertainty surrounding future SLR trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical modeling is needed to explore how different SLR projections may impact river delta evolution. In this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5 and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial timescales. In particular, increased channel mobility due to SLR corresponds to higher sand connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify correlations between surface and subsurface properties, and find that inferences of subsurface structure from the current surface configuration should be limited to time spans over which the sea level forcing is approximately steady. As a result, this work improves our ability to predict future delta evolution and subsurface connectivity as sea levels continue to rise. 
    more » « less